Friday, December 9, 2011

The Nobel Laureate of Former Disgrace


"Each time I was promoted there were colleagues fighting it..."

Distinguished Prof. Dan Shechtman displays his notebook
at the Nobel Laureate lecture: Dec. 8th, 2011. Previously,
colleagues hurled at him basic textbooks in crystallography
and told him to read them!

Israeli professor Dan Shechtman was vilified for daring to challenge scientific orthodoxy

Read the full story at the Jewish Chronicle
By Nathan Jeffay, December 9, 2011

Shechtman at the Technion in Haifa, where his eureka moment led to a new theory about the way matter is arranged

It could be the closing scene of a feel-good film. But it will happen for real, tomorrow afternoon. Israeli scientist Dan Shechtman, mocked for years for his off-the-wall theory, has not only been proved correct, but he will climb to the podium at Stockholm Concert Hall and receive the Nobel Prize for chemistry. The award is often shared by several people , but he has it all to himself.

During an interview in his Haifa office shortly before travelling to Stockholm, Shechtman recalled the initial reaction to the work that earned the prize. His research-team leader gave him a bit of a talking to. "He came to my office and put a textbook on my desk, smiling sheepishly and telling me that I should read it, as what I was saying was impossible."

Shechtman, a 70-year-old professor of materials engineering at the Technion - Israel Institute of Technology, is a modern-day Archimedes. While most Nobel winners receive their prize after painstakingly developing a theory or idea over years, like the ancient scholar who got into the bath and saw the water level rise, Shechtman had a eureka moment.

It was the morning of April 8, 1982 and he was on sabbatical from the Technion at the National Bureau of Standards in Washington DC. He looked through his electron microscope, and found something that defied the laws of science, as they were understood.

Each time I was promoted there were colleagues fighting it

Until then, it was believed that atoms are always arranged in solids in symmetrical patterns, in groups of two, three, four or six. But he was looking at an alloy and found that it contained atoms in groups of 10 around a single point. They made a pattern that did not repeat itself, flying in the face of received wisdom that patterns will always be repeated. These formations became known as "quasicrystals" - and now represent a branch of science studied worldwide.

The Nobel committee said when announcing the award that Shechtman had "forced scientists to reconsider their conception of the very nature of matter". But to get there was a long and sometimes humiliating battle. The team leader who demanded that he reread the textbook decided that he was bringing "disgrace" to his team and expelled him. Shechtman, who had dreamed of scientific accomplishment ever since his childhood, was not discouraged. "You can say it's funny or you can say it's stupid, but I showed everyone who was prepared to listen," he recalls. "I even sent Chanucah cards with the pattern on them."

When he returned from Washington in late 1983 he found many colleagues sceptical about his theory, but discovered an ally in the form of Ilan Blech, a professor in the faculty of materials science. This gave him the confidence to write an article on his findings and submit it to the Journal of Applied Physics. It came back with a rejection letter. "The editor didn't even send it for peer review," he says sadly. An improved version written with three collaborators, including Blech, was accepted by Physical Review Letters and published in 1984.

"Hell broke loose," Shechtman recalls. He started receiving letters from scientists across the world saying they had be able to replicate his experiment, but there was also a very strong critical reaction. The International Union of Crystallography and the American Chemical Society led it. In their view, the fact that quasicrystals could only be seen on electron microscopes and not x-ray microscopes undermined the findings, and they believed that he was really looking at two structures of atoms and misreading it as a single one.

Leading the opposition was the only man ever to have won two Nobel Prizes, American chemist Linus Pauling. He reportedly used to say: "There is no such thing as quasicrystals, only quasi-scientists." Even in Shechtman's own department at the Technion, "there were professors fighting against my promotion and each time I was promoted there was opposition," he says.

It was not until 1987 that his findings started to become mainstream. Two groups of scientists managed to identify quasicrystals on an x-ray microscope. He recalls going to the International Union of Crystallography after this breakthrough. "They said: 'Danny, now you're talking' and they accepted it." When Pauling died in 1994, the opposition evaporated completely.

When the call came from the Nobel committee in October, he was told to keep the news a secret for half an hour, when it would be announced. "I sat at my desk for 20 minutes just looking around and thinking: 'What does it mean?'" He was calm. "If you measured my heart rate now it is 60; I don't know if at that moment it got as high as 61." After 20 minutes he called his wife Zipora, a professor at Haifa University, "because she is always mad that I don't tell her about prizes".

He was, he says, completely unprepared for the euphoria at the Technion and his celebrity across Israel which followed. The pattern he discovered is the ultimate fashion statement at the Technion, where staff members wear ties decorated with it. Shechtman shows off a kippah with the pattern that a student crocheted for him to wear when addressing Jewish groups.

Asked what is the practical significance of his discovery, Shechtman gives a wry smile and says "very little". Quasi-crystals have been used to make strong materials for razors and non-stick pans, but for Shechtman the important thing is the correction of an erroneous assumption about the world. In his opinion, "a humble scientist is a good scientist", and by forcing a rethink on the basics, he believes he has made the scientific community more humble.

"The new definition of a crystal is a wonderful one, because it is humble," he says. "It doesn't say: 'A crystal is…' It says: 'By a crystal we mean…'"

Shechtman's personality fits his talk of humility. There is no ceremony - no waiting rooms or secretaries - when visiting his office. His hobbies confirm the impression that he is a patient man - he likes sailing and jewellery-making. He believes that there is a message for everybody in his prize. "If you find something, concentrate on it and try to see if it is real; listen to other people but if they aren't interested, don't take their words as fact. Continue to push your belief."


No comments:

Post a Comment